1. Consider the curves $r=3 \cos (\theta)$ and $r=1+\cos (\theta)$
a) Sketch the curves on the same set of axes using the polar axes below

b) Find the area of the region inside the curve $r=3 \cos (\theta)$ and outside the curve $r=1+\cos (\theta)$ by setting up and evaluating a definite integral. Your work must include an antiderivative.
2. A particle moves along a curve given parametrically by $x=3-2 \cos (3 t)$ and $y=1+4 \sin (3 t)$.
a) Give a sketch of the parametric curve including the direction of motion based on the equation you get by eliminating parameter t.
b) A range of t for a single trace of the curve
c) The equation of the line tangent to the path of the particle at $\mathrm{t}=\pi / 18$.
d) The concavity of the curve at $\mathrm{t}=\pi / 18$.
3. Determine the length of the curve given by $y=7(6+x)^{3 / 2}$ for $189 \leq y \leq 875$
4. Evaluate each of the following integrals:
a) $\int 4 x \cos (2-3 x) d x$
b) $\int_{6}^{0}(2+5 x) e^{x / 3} d x$
c) $\int \sin ^{3}\left(\frac{2 x}{3}\right) \cos ^{4}\left(\frac{2 x}{3}\right) d x$
d) $\int \frac{\sqrt{x^{2}+16}}{x^{4}} d x$
e) $\int \frac{8-3 t}{10 t^{2}+13 t-3} d x$
5. Determine the area of the region bounded by $y=x e^{-x^{2}}, y=x+1, x=2$ and the y-axis.
6. Determine the volume of the solid obtained by rotating the region bounded by $y=(x-1)(x-3)^{2}$ and the x-axis about the y-axis.
7. Evaluate the following limits:
a) $\lim _{t \rightarrow 4} \frac{t-\sqrt{3 t+4}}{4-t}$
b) $\lim _{t \rightarrow \infty} \frac{4+7 t}{2-t}$
c) $\lim _{t \rightarrow 0+} \sin (t)^{\tan (t)}$
8. An airline requires the total outside dimensions (length + width + height) of a checked bag not to exceed 62 inches. Suppose you want to check a bag whose height is equal to its width. What is the largest volume of a bag of this shape that will meet the criteria?
9. Find the maxima/minima (if it/they exist) for the function $y=\frac{x}{1+x^{2}}$
10. Calculate the equation(s) of the line(s) tangent to the curve $x^{3} y^{2}+2 x y+5 x^{2}=8$ at the point where $x=1$.
